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Abstract

We consider a one-dimensional mixed convection of liquid metal with forced circulation and unequal heating. The

steady solution of the corresponding heat equation with proper boundary conditions is obtained analytically. The
solution shows formation of a local circulation loop by unequal heating and deformation of the circulation loop by
the forced circulation. It is also found that the heat transfer characteristics are almost independent of the unequal

heating condition, although the deformation occurs more easily for a more symmetric case. 7 2000 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Convection heat transfer has been usually studied in
natural convection dominant region or in forced con-

vection dominant region. However, in nature, there are

many phenomena that cannot be explained by either
limit. In such phenomena, buoyancy e�ect that induces

natural convection and externally imposed ¯ow con-

dition that results in forced convection, both partici-
pate in heat transfer. Usually, this kind of convection

is called `mixed convection.'

So far, there have been many studies on mixed con-

vection [1,2], but the phenomena are so complicated

that the fundamental features of mixed convection
heat transfer are not fully known yet. In this paper, we

consider a simple mixed convection system that can be

treated one-dimensionally. Even though mixed convec-
tion phenomena are usually two- or three-dimensional,
we expect that the one-dimensional approach may give

an insight for complex mixed convection phenomena.
The idea of the target system is obtained from heat

transfer in the core of a nuclear reactor (Fig. 1) [3,4].

In the core, generally, the heat generation rate is not
uniform, which may induce natural convection in the
core. There also exists global circulation between the

core and a heat exchanger. When the two e�ects, the
non-uniform heating and the global circulation, are
comparable, the heat transfer should be treated as a
mixed convection phenomenon.

To simulate the heat transfer in the core of a nuclear
reactor, we design a simple model system (Fig. 2). It is
composed of a circulation loop with an inlet through

which ¯ow is provided externally and an outlet
through which the provided ¯ow out¯ows. The target
system can also be considered as two geometrically

symmetric vertical channels whose inlets and outlets
coincide respectively. The non-uniform heating in the
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core is simply represented with two heaters of di�erent

powers installed at the centers of the left and the right

channels. The strengths are denoted by QL and QR for

the left and the right, respectively. Uext denotes the vel-

ocity of the ¯uid provided at the inlet. Heights of both

the channels are 2l. Although this system is a crude ap-

proximation to the real one, we can study the qualitat-

ive nature of the mixed convection heat transfer. A

similar approach can be found in the study of Ray-

leigh±Bernard convection [5].

Qualitative predictions for the asymptotic cases

�Uext40 and Uext41� can be made. When the buoy-

ancy e�ect caused by the unequal heating dominates

(natural circulation limit), a circulation loop forms, as

shown in Fig. 3(a). Without loss of generality, we

assumed QL > QR: However, when the provided ¯ow

dominates (forced circulation limit), the circulation

loop disappears and ¯uid ¯ows upwards in both chan-

nels (Fig. 3(b)). Existence of the ¯ow reversal point

may a�ect heat transfer and is usually expected to

increase the system temperature, which is undesirable

considering safety.

In this paper, the formation and deformation of the

circulation loop and heat transfer are studied quanti-

tatively and analytically. Especially, we will focus on

the steady solutions of the liquid metal loop. The

Nomenclature

A cross-sectional area of the channel
Cp speci®c heat
~g gravitational acceleration

l half-height of the channel
p pressure
Pe PeÂ clet number

Q(X ), q(x ) dimensional and dimensionless heat
input distribution functions

Qi, qi dimensional and dimensionless heat

inputs (i = L, R, h, tot)
r dimensional radial axis
T dimensional temperature
t time

U, u dimensional and dimensionless average
¯ow velocities

X, x dimensional and dimensionless axial

axes

Greek symbols
a heat di�usivity
b coe�cient of expansion

m viscosity
r density of ¯uid
f dimensional azimuthal axis

Subscripts
ext given externally

h heater
L left channel
R right channel
r ¯ow reversal

ref reference
tot total

Fig. 1. Heat transfer in a nuclear reactor. Natural convection

induced by the non-uniform heating in the core and the global

circulation between the core and a heat exchanger compete

with each other and play major roles in the heat transfer.

Fig. 2. The target system is composed of two vertical channels

with heat sources at the centers of the channels. The system is

geometrically symmetric but the heat source strengths are

di�erent.
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model system is similar to the thermosyphon with
through¯ow [6±9], especially Mertol's thermosyphon

[7]. But, there are two major di�erences. One is sym-
metry. While Mertol's thermosyphon is symmetric with
respect to the horizontal axis and there is no preferred

¯ow direction without through¯ow, our system has a
preferred ¯ow direction due to the unequal heating.
The other di�erence is the working ¯uid. For liquid

metal, the conduction e�ect cannot be neglected
whereas Mertol neglected it.

2. Formulation

For heat transfer phenomena, governing equations

are usually composed of the continuity equation (mass
conservation),

@r
@ t
� r �

�
r ~U

�
� 0, �1�

the momentum equation (Navier±Stokes' equation),

r

 
@ ~U

@ t
� ~U � r ~U

!
� ÿrp� mr 2 ~U� r~g, �2�

the energy equation (heat equation),

@T

@ t
� ~U � rT � ar 2T� Q

rCpA
, �3�

and boundary conditions. Here, ~U, p, T, A and Q are
velocity, pressure, temperature, cross-sectional area
and heat distribution function, respectively. And r, m,
~g, a, and Cp are density, viscosity, gravitational accel-
eration, heat di�usivity, and speci®c heat, respectively.
Time axis is t.

For the system under consideration, the coordinates
are set as shown in Fig. 2. In both the channels, the

axial axes are denoted by X and the radial and azi-
muthal axes by (r, f). For each channel, the direction
of the axial axis X is from the inlet to the outlet, indi-

vidually.
For simplicity, we introduce several assumptions.

The most important assumption is that the ¯ow in the

loop is one-dimensional except at the inlet and the out-
let. Since our focus is on the heat transfer in axial
direction, this assumption is e�cient unless the diam-

eter of the channel is comparable to or larger than the
length.
We employ Boussinesq approximation and write the

density as

r � rref�1ÿ b�Tÿ Tref ��, �4�

where b is the coe�cient of expansion and rref is the
density at T � Tref : We assume no pressure drop,

which is found valid except near the ¯ow reversal
point. We also assume a volumeless heat source, zero
horizontal lengths of the channels and no heat loss to
surroundings for simplicity.

Under the one-dimensional ¯ow assumption, the
governing equations can be simpli®ed by averaging the
three-dimensional equations with respect to cross-sec-

tion plane, i.e. (r, f� plane. Especially, the continuity
equation can be rewritten with the average axial vel-
ocity hUi
@ hUi
@X
� 0, �5�

except at the inlet and the outlet. Eq. (5) implies that
the average velocity is constant throughout each chan-
nel, so that

Fig. 3. Two prototypes for ¯ow directions in the channels. (a) A circulation loop is formed. (b) The circulation loop is deformed

and the ¯ow directions are all upwards.
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hUi �
�
UL for the left channel,
UR for the right channel,

�6�

where UL and UR are constants. Recall that the test
loop is geometrically symmetric, so the cross-sectional
areas are all same.

For steady solutions, the momentum equation
implies force balance. For this system, force balance
can be replaced by buoyancy balance assuming no

pressure drop, which is written as�
rL ~g dX �

�
rR ~g dX, �7�

where rL�X � and rR�X � are the densities in the left
and right channels, respectively. With temperatures,
Eq. (7) becomes� 2l

0

TL dX �
� 2l

0

TR dX: �8�

where TL and TR are the temperatures in the left and
right channels.
With volumeless heat source assumption, Q is

expressed with Dirac's delta function:

Q�x� � Qhd�Xÿ Xh �, �9�

where Qh is the heat source strength and Xh is the heat

source location.
The boundary conditions must be considered care-

fully. First, temperature is continuous everywhere,

including at the inlet, at the outlet, and at the heat
source positions. And the ®rst derivative of tempera-
ture, dT=dX is also continuous everywhere except at

the inlet and at the heat source positions. Note that
dT=dX is continuous at the outlet because there are no
external constraints on temperature at the outlet. In

other words, ¯ows from both channels are mixed
together freely at the outlet. The continuity and dis-
continuity are mainly due to conduction. Similar
examples can be found in the study of shock waves

[10].
For convenience, we locate the origin of temperature

at the inlet, so that T�X � 0� � 0: This is mathemat-

ically valid, if appropriate values are chosen for the
physical quantities. Note that this shift of origin
implies that there is a heat reservoir at the inlet.

Let us introduce dimensionless variables, u, x, y,
and q:

�U, UL, UR � � Uext�u, uL, uR �, �10�

X � lx, �11�

�T, TL, TR � � T0�y, yL, yR �, �12�

�QL, QR � � Qtot�qL, qR �, �13�

where

T0 � Qtot

rCpAUext

, �14�

Qtot � QL �QR, �15�

Pe � lUext

k
: �16�

Usually, Pe is called the PeÂ clet number. With this non-
dimensionalization, the inlet position is x � 0 and the
outlet, x � 2: The heat sources are located at x � 1:
Remember that we assumed zero horizontal lengths.
The Eqs. (1), (3), (6), (8), and (15) are given in their

nondimensional form in Eqs. (17)±(21), respectively.

uL � uR � 1, �17�

ui
dyi
dx
� 1

Pe

d 2yi
dx 2
� qid�xÿ 1�, �18�

hui �
�
uL for the left channel,
uR for the right channel,

�19�

� 2

0

yL dx �
� 2

0

yR dx, �20�

qL � qR � 1, �21�
for i � L, R:

3. Solutions

3.1. Solution of the heat equation

For solutions of the full system, ®rst, it is convenient
to ®nd a solution of the one-dimensional heat

equation,

ui
dyi
dx
� 1

Pe

d 2yi
dx 2
� qid�xÿ 1�, �22�

with boundary conditions at the inlet,

yi�x � 0� � 0, �23�
and at the outlet,

yi�x � 2� � Dy � yout ÿ yin, �24�
for i � L, R: In addition, yi is continuous everywhere
and dyi=dx is continuous except at x � 1, the heat
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source position. Here, yin and yout are the inlet and
outlet temperatures, respectively.

The solution of the heat equation has the form of

y � AE x
i � B, �25�

except for ui � 0, where

Ei � euiPe: �26�
Because heat transfer for the ui � 0 case can be studied
as the limit case of ui40, it will not be treated as a

special case.
Integrating the heat equation from 1ÿ to 1+, we

have the following equation as the jump condition at

the heat source position:

dyi
dx

����
1�
ÿdyi

dx

����
1ÿ
� ÿqiPe: �27�

To solve the equation more easily, we introduce a new
variable yh, i such that

yi�x � 1� � yh, i, �28�
for i � L, R:
Considering the boundary conditions, the solution is

found as

yi �8>><>>:
yh, i

ÿ
E x

i ÿ 1
�
=�Ei ÿ 1� for 0 < x < 1,

yh, i for x � 1,ÿ
Dyÿ yh, i

�ÿ
E xÿ1

i ÿ 1
�
=�Ei ÿ 1� � yh, i for 1 < x < 2:

�29�

Note that the solution of the full system satis®es the
temperature continuity conditions at the inlet and at

the outlet automatically from the boundary conditions,
Eqs. (23) and (24).
With the jump condition at x = 1, we can eliminate

yh, i:

yh, i �
�
Dyÿ qi

ui
�1ÿ Ei �

�
=�1� Ei �, �30�

for i � L, R:

3.2. Solution and its characteristics

Now, the unknowns are uL, uR, and Dy for the sol-

ution of the full system, and the parameters are Pe
and qL (or qR). Let us consider the other conditions
left, buoyancy balance, continuity of dy=dx at the out-

let, and mass conservation.
First, from the continuity of dy=dx in Eq. (29) at the

outlet, after a little algebra, we have

Dy �
�
qL

EL

EL � 1
� qR

ER

ER � 1

��"
uLE

2
L

E 2
L ÿ 1

� uRE
2
R

E 2
R ÿ 1

#
: �31�

And from the buoyancy balance in Eq. (20), we have

Dy �
�
QL

uL

EL ÿ 1

EL � 1
ÿ QR

uR

ER ÿ 1

ER � 1

��"�
1

uRPe

ÿ 1

uLPe

�
ÿ 2

�
1

E 2
R ÿ 1

ÿ 1

E 2
L ÿ 1

�#
: �32�

Comparing Eqs. (31) and (32), with the mass conserva-
tion constraint, uL � uR � 1, we can ®nd a solution.

Several examples are shown in Fig. 4. The solid lines
are the curves for the continuity equation (31) and the
dashed lines are for the balance equation (32). The

intersection point of the two curves is the solution. As
shown in several examples in Fig. 4, there exists one
solution for each case. And the solutions are found to
be linearly stable.

The curves of dy=dx continuity, the solid lines, have
a maximum near uR � 1=2: As Pe increases, the maxi-
mum value increases and converges to 1. It should be

noted that the maximum value is still less than 1,
which corresponds to the heat transfer rate for the
forced convection limit. It is also found that the curve

becomes ¯at around the maximum as Pe becomes
larger. We think that the ¯atness is closely related to
the heat transfer characteristics. It will be discussed

later. For the same Pe values, the curves seem almost
the same even for di�erent qR values. But actually, the
curves become more symmetric (with respect to uR �
1=2� as the heating condition becomes symmetric even

though the di�erences are small.
The curves of the force balance, the dashed lines,

diverge near uR � 1=2: The divergence appears because

the buoyant force is hardly compensated with equal
¯ow distribution �uR � uL � 1=2). For small Pe
(Fig. 4(a), (c), (e)), the curve is nearly anti-symmetric

with respect to uR � 1=2: However, for large Pe
(Fig. 4(b), (d), (f)), the left segment of the curve
changes its shape and appears to have a local mini-
mum. For the case that the minimum exists, the sol-

ution lies between the minimum and uR � 1=2:
For qR � 0:25 �qL � 0:75� and Pe � 1:0 (Fig. 4(a)),

for the solution, uR is found to be negative, which

implies that a local circulation loop forms
(Fig. 3(a)). For this case, the temperature pro®le is
shown in Fig. 5(a). The solid line is for yL and the

dashed for yR: For qR � 0:25 and Pe � 7:0, for the
solution, uR is found to be positive, which implies
that ¯uid ¯ows from the inlet to the outlet in both
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Fig. 4. Temperature di�erences obtained from the dy=dx continuity constraint (solid lines) and the force balance constraint (dashed

lines). The intersection point is the solution: (a) qR � 0:25 and Pe = 1.0, (b) qR � 0:25 and Pe = 7.0, (c) qR � 0:34 and Pe = 1.0,

(d) qR � 0:34 and Pe = 7.0, (e) qR � 0:40 and Pe = 1.0, (f) qR � 0:40 and Pe = 7.0.
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channels. For this case, the temperature pro®le is

shown in Fig. 5(b). The major di�erence between

the two temperature pro®les is the slope variations.

For the other qR values, the qualitative features are

the same as those for qR � 0:25:
Flow distribution by the buoyant force is studied.

The relations between uR and Pe are given in Fig. 6

for di�erent qRs. As Pe increases, uR converges to a

certain value, which is large for large qR: In Fig. 6,

we can ®nd the ¯ow reversal conditions where uR

changes its sign. The ¯ow reversal implies defor-

mation of the local circulation loop formed by

unequal heating. As qR approaches 1/2, for a more

symmetric case, the local circulation loop becomes

easy to disappear, that is, ¯ow reversal occurs for

small Pe. The detailed feature is shown in Fig. 7,

where the ¯ow reversal condition, say Per, is plotted

with respect to qR:
Heat transfer can be characterized with Dy: In Fig. 8,

Dy is plotted with respect to Pe for the di�erent qRs. It

is hard to identify the curves in Fig. 8(a), so a magni-

®ed ®gure is given in Fig. 8(b). As Pe increases, Dy
increases and soon converges to Dy � 1, the forced cir-

culation limit. For a large qR, the convergence of Dy
occurs faster than for small qR: The convergence of the

heat transfer characteristics is closely related to the

¯atness of dy=dx continuity curve. For a su�ciently

large Pe, the continuity curve has a large plateau

Fig. 5. Temperature pro®les: the solid line is for yL and the

dashed for yR: (a) qR � 0:25 and Pe = 1.0, (b) qR � 0:25 and

Pe = 7.0.

Fig. 6. Relation between uR and Pe.

Fig. 7. Flow reversal condition �uR � 0).
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around uR � 1=2, whose height is nearly equal to 1.
Therefore, Dy of the intersection point is approxi-

mately 1, even though uR converges to di�erent values
for di�erent heating conditions.
For small Pe, Dy is small compared to that of the

forced circulation limit. The small Dy means that the
heat supply from the sources transfers out faster. In
other words, the heat transfer characteristics are

enhanced by decreasing Pe, even though the real tem-
perature di�erence, DT increases. One of the main
reasons for the enhancement is the relative growth of

conduction e�ect that is negligible for large Pe. The
present results also show that Dy does not diverge as
Pe goes to 0 or near the ¯ow reversal point �uR � 0�
while it might be expected. The divergence of Dy is

thought to be avoided by the smoothing e�ect of con-
duction.
As shown in Fig. 8, the heat transfer characteristics

seem almost independent of qR for all ranges including
the region near the ¯ow reversal point. The heat trans-
fer rates exhibit small di�erences only near the ¯ow

reversal point (the ¯ow reversal condition for
qR � 0:25, Per, 0:25 is shown in Fig. 8 for comparison),
where conduction e�ect is comparable to e�ect of con-

vection. The di�erences can be neglected for several

systems from the practical point of view. For example,
in the decay heat removal of PRISM, Pe is about a

few hundred or more [3].
Heat transfer characteristics are associated with ¯ow

redistribution caused by buoyant e�ect due to unequal

heating. Dramatically, in this system, the ¯ow redistri-
bution has tendencies to compensate the e�ect of the
unequal heating and to regularize the heat transfer,

which makes the di�erences unnoticeable. The reason
for the independence can be found in the existence of
the ¯at region on the dy=dx continuity curve. If the

solution is found in the ¯at region, the consequent
heat transfer exhibits almost the same feature, even
though di�erent unequal heating condition, of course,
causes di�erent ¯ow distribution. Since the larger Pe

is, the wider the ¯at region becomes, the e�ect of
unequal heating is harder to detect for large Pe.
Let us recall the origin of the curve that has the ¯at

region. The curve was derived from dy=dx continuity
at the outlet. This implies that the outlet temperature
free constraint is one of the major key-points for the

¯ow redistribution and heat transfer. For detailed
mechanism, more studies will be required.
Available experimental results [4] are shown in Fig. 9

for comparison. Qualitative features of the experimen-
tal results agree with the analytical results, especially
the independence from unequal heating condition,
although the analytical results underestimate the ¯ow

reversal point. The quantitative disagreement near the
¯ow reversal point seems to result from no pressure
drop assumption.

4. Summary and further researches

Competition of forced circulation and buoyancy
e�ect induced by unequal heating was investigated

analytically. The system was simpli®ed and treated as
a one-dimensional loop. For the governing equation,
one-dimensional heat equations with proper boundary

conditions were considered. The steady solution for
liquid metal was found from simultaneous satisfaction
of the continuity condition and the buoyancy balance.

A survey of solutions showed that ¯ow reversal, that
is, deformation of a local circulation loop formed by
unequal heating, occurs at certain values of Pe, say
Per, which was found to be small for nearly symmetric

cases. For small Pe, for the natural circulation limit
and even near the ¯ow reversal point, enhancement of
heat transfer characteristics was found, which is due to

increment of conduction e�ect. Moreover, the heat
transfer characteristics are found to be almost indepen-
dent of the unequal heating condition, which is

achieved by self-redistribution of ¯ow and closely re-
lated to the outlet temperature free constraint. From a
comparison of the analytical results with experimental

Fig. 8. Relation between Dy and Pe. Because of the di�culty

in identi®cation of the curves, a magni®ed ®gure is given in

(b). The ¯ow reversal condition for qR � 0:25, Per, 0:25 is

shown for comparison.
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results, we can ®nd that the heat transfer character-
istics exhibit the same qualitative features.

For the system we have considered here, the outlet
temperature was obtained from some constraints. But
sometimes, the outlet temperature can be ®xed. For
this case, the outlet temperature becomes a parameter

and more interesting heat transfer phenomena may be
found. For example, in a recent report [3], heat trans-
fer was announced to be sensitive to the outlet tem-

perature. The stabilization by ¯ow redistribution may
not be found in those systems. More studies are
required for the ¯ow redistribution mechanism.
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